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1. I N T R O D U C T I O N :  ELEMENTARY T H E O R Y  

It often happens in scientific research that when one is looking for one 
thing, one is led to discover something else that one wasn't  expecting. This is 
what happened to me with the monopole concept. I was not searching for 
anything like monopoles at the time. What  I was concerned with was the fact 
that electric charge is always observed in integral multiples of  the electronic 
charge e, and I wanted some explanation for it. There must be some funda- 
meptal reason in nature why that should be so, and also there must be some 
reason why the charge e should have just the value that it does have. It  has the 
value that makes hc/e z approximately 137. And I was looking for some 
explanation of this 137. 

A. S. Eddington at that time was also much concerned with this question. 
He :,et up a chain of  arguments which led him to conclude that this number was 
exactly the integer 137. I 'm  afraid that Eddington's arguments are not really 
sound. I was never able to follow them, and I don ' t  think anyone else was. 
I don ' t  think there is any interest in them at the present time. Also, there seems 
to be pretty good experimental evidence that this number is not 137 exactly. 

I was following a different line of argument, which did not lead to any 
valt.e for this number, and, for that reason, my argument seemed to be a 
failure and I was disappointed with it. But it did lead to the new idea of the 
monopole, a concept of great mathematical interest and capable of  wide 
generalizations. 

The fact that I was looking for an explanation of e is reflected in the title 
of  the paper that I wrote on the subject, "Quantized Singularities in the 
Electromagnetic Field." The quantization was a different one from what I 
expected. 

The problem of explaining this number hc/e 2 is still completely unsolved. 
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Nearly 50 years have passed since then. I think it is perhaps the most funda- 
mental unsolved problem of  physics at the present time, and I doubt very 
much whether any really big progress will be made in understanding the 
fundamentals of physics until it is solved. 

Well, if we consider the arguments that I was following at that time, we 
start with the Maxwell equations: 

0E 
c ~---~ = curl H (1.1) 

~H 
c 8---t = - curl E (1.2) 

div E = 0 (1.3) 

div H = 0 (1.4) 

These are the equations that hold in the vacuum. One can bring in electric 
charges very easily, by adding on suitable terms to the right-hand sides of  the 
equations. One adds the term -4r r j  to (1.1) and 4~rp to (1.3), wherej  and p are 
the electric current and density. 

Now the vacuum equations are symmetrical between E and H, the electric 
and magnetic fields. One can put E for H and - H  for E. Thus one could 
correspondingly introduce magnetic charge and magnetic current. To do that 
it would require an extra term -4r rk  in (1.2) and 4~cr in (1.4), k being the 
magnetic current and cr the magnetic charge density. Just starting from the 
equations in the vacuum, noticing that they are symmetrical, one would 
postulate magnetic charge, from the theoretical point of  view, just as readily 
as electric charge. But actually magnetic charge is never observed. 

Now, if you do introduce particles with magnetic charge, called mono- 
poles, you can set up quite definite equations of  motion for them. For a 
particle with electric charge e we have the Lorentz equations of motion. In 
relativistic notation they are 

d2v " dv~ (1.5) m - - d ~  = eF.v---~ 

where v. is the velocity 4-vector, s is the proper time measured along the 
trajectory of the particle, and F.~ is the 6-vector whose components are E and 
H. For  a monopole with magnetic charge t~, the corresponding equations are 

d2v" dv~ (1.6) m --~-fi- = tzF~--~- 

where F2~ is the dual 6-vector to F,~ obtained by putting E for H and - H  for 
E. Here we have definite classical equations of motion for a monopole. 

Now when you go over to the quantum theory, there is a difficulty 
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coming in, because the equations in the quantum theory involve the use of the 
electromagnetic potentials. The magnetic potentials A, if you just think of 
them from a three-dimensional nonrelativistic point of view, are introduced 
this way: 

H = curl A (1.7) 

and one cannot satisfy this equation in the space around a monopole. 
One can follow up a certain line of argument--I will just go through it 

briefly--that leads to the concept of the monopole appearing as a possibility 
in the quantum theory. There is a quantized value of the monopole strength 
which you don't get in the classical theory at all. 

We use a wave function, let's call it ~b, to describe the motion of a particle. 
It is a complex quantity, with the meaning that [~b] 2 can be interpreted as the 
probability density of the particle being in any place. Now we may make a 
change of the phase factor in ~b, putting 

with ~ any real quantity, and then the square of the modulus of ~F is the same 
as the square of the modulus of the original ~b, and gives the same probability 
density. Now the wave equation satisfied by W will be rather different from 
the one satisfied by ~, because 

8x. \Sx .  

It means that where tF satisfies a certain wave equation involving O/8x., 
will satisfy a corresponding equation, where the O/8x. operator is replaced 
according to the scheme 

0 0 i ~ '  (1.8) 
Ox u ~ ~ + oX u 

Now, if you're at all familiar with the motion of charged particles, you 
know that if you have equations for a charged particle in the absence of an 
electromagnetic field, you get the corresponding equations for a particle in 
the presence of a field by replacing the momentum operators 

p.  ___>p. + e Au (1.9) 
C 

You do this both in classical theory, expressed in Hamiltonian form, and in 
the Schrtidinger equation of the quantum theory. In the Schr6dinger equation 
p" corresponds to -ih(~/Ox.), so the change (1:9) leads to 

Ox. § + i A" (1.10) 

This corresponds to (1.8) if we identify Or/Ox,-+ (e/hc)A ~. It would seem 
then, that if you take the wave equation for W and make a change in phase 
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in ~F, you get a corresponding equation with some different potentials A 
which you didn't have previously. But this change is pretty trivial, because the 
A ~ are changed by the gradient of a scalar, which means no change in the field 
quantities E and H. 

I want now to introduce the idea of a more general change in phase, 
where 7' is not an integrable function of position. That  is to say, if you know 
the value ofT' at one point, the value ofT' at a neighboring point is determined, 
but the connection between 7' at the neighboring point and the original 7' is 
such that, if you go around a closed loop, making the correct changes all the 
way, the 7' that you end up with is not the same as the original one. This is the 
idea of a nonintegrable function. The analysis leading to (1.8) will then still 
apply, except that 87"/8x~ will be replaced by K ", which is no longer the 
gradient of a scalar. We shall have from (1.10) and (1.8) 

e A~ (1.11) 

I f  we take the integral of 7' around a closed loop--let 's  just think of it 
three dimensionally now--we get from (1.11) 

f ef ef(curlA, dS ) ~cTdxr=-~c Ardx~=-~c 

where dS is an element of surface area of the surface which has this closed 
loop as its perimeter. Now this is equal to (e/he) f (H, dS), so 

f e f (H,  dS) (1.12) KTdx~=~c 

That means that the change in phase when we go around a closed loop is 
connected with the magnetic flux through the loop with the coefficient e/hc. 

So far this is just a new mathematical picture for the Schr6dinger equa- 
tion, and doesn't contain any new physics. We can, instead of introducing the 
field in the usual way, just express the field in terms of a nonintegrable phase 
factor in the wave function. 

Now I 'm going to bring a new feature into the argument, namely, the 
phase 7' is not a well-defined quantity, because you can change it by any 
integral multiple of  2#, without altering the wave function q~. Thus in the 
expression for the change in 7' going around a closed loop, you have to take 
into account that 7' itself is always undefined to the extent that we can add 
to it any integral multiple of 2#. So, in this formula (1.12), we must add on 
2#n with n an unknown integer. Thus we have the equation 

f e f(H, dS) (1.13) 2~'n + xr dxr = hcc 
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connecting the change in phase around the loop with the magnetic flux 
through the loop. 

Let us apply this to a small loop. Taking just a very small loop, the 
mag~ eric flux through it, under ordinary physical conditions, will be close to 
zero. So the right-hand side of equation (1.13) is close to zero. Now if the 
wave function �9 is continuous in the usual sense, Kr will be small. Then ~, 
will be such that around a small closed loop it can' t  change very much. Thus 
) ,%d Xr will be close to zero. So, under these ordinary conditions, we would 
just have n equal to zero. 

gut  there is an exceptional case that can arise, namely, in the neigh- 
borh ~od of ~F = 0. Even though ~F is continuous, the phase may undergo 
quite a big change when we go around a small loop. One can see this most 
cleariy by an example. Take 

W = xl  + ixz 

and take a small !oop going around the axis xl = x2 = 0. Now this ~F is quite 
continuous in the neighborhood of xl = x2 = 0, but the phase is such that 
it changes by 2~r when we take a very small loop around this axis. So that if 
we have this kind of singularity, we have a possibility of getting n = 1 in 
equation (1.13). We then have the situation that the integral of,c r is not small, 
even for a small loop. 

ii would like to go on to consider a surface that is not small and apply 
equa :ion (1.13) to it. Then, if we have this phenomenon of,~r or the magnetic 
potentials behaving as above, we have what we may call a nodal line cutting 
through the surface and we can have the phenomenon of n r 0. 

Suppose that we have a surface whose perimeter is shrunk up to zero, that 
is to say, a closed surface, like the surface of a sphere. Then the line-integral 

on the left of  (1.13) is zero. But f (H, dS), the integral being taken over the 
surface of the sphere, is not zero. That would correspond to some magnetic 
charge occurring inside the sphere. It gives the idea of the monopole magnetic 
charge. 

Now the magnitude of this magnetic charge is such that total magnetic 
flux ~:rossing the surface of the sphere is 4,r times the strength of the magnetic 
charge. I f  we call/x the strength of the charge, we get (e/hc)4~r~ for the right- 
hand side of (1.13). Putting the integral on the left equal to zero, we get 

e 
2~n = ~ c c 4 ~  

That  ~eads to the formula 
et~. = �89 (1.14) 

Chis argument leads to the conclusion that there is a quantized value for e 
if we have any monopole at all, or alternatively, quantized ~ if we have any 
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particle with charge e. We get this condition connecting the quantized 
singularities of the electromagnetic field. You see that it is not like the condi- 
tion for hc/eL It does not fix any value for e. 

This theory would show that if there exists any monopole at all in the 
universe, all electric charges would have to be such that e times this monopole 
strength is equal to �89 All electric charges would be quantized under those 
conditions. That is a satisfactory result, but it doesn't tell us the value of e 
because/~ is unknown. 

That is the elementary theory of the magnetic monopole. There are 
different ways of expressing it, but they always lead to this formula (1.14). 
This work was done in 1931. 

2. DEVELOPMENT OF A GENERAL THEORY 

More recent work is concerned with the development of this theory, and 
in particular with getting equations of motion for the charged particles and 
the monopoles in interaction. Now there is quite a serious difficulty when you 
face up to that problem, because you have difficulties already when there are 
no monopoles present. I f  you just consider electric charges interacting with an 
electromagnetic field, there is the fundamental difficulty that you have the 
Lorentz equation of motion for the charged particle, but the field quantities 
F~ which are to be inserted in it refer to the field at the point where the 
particle is situated. And the field there is, of course, infinite, as the Coulomb 
force for a point particle at the point where the particle is situated is infinite. 
That leads to the whole problem of quantum electrodynamics. 

There has been a big development of this subject of quantum electro- 
dynamics by the procedure that, although the basic equations lead to infinities 
when you try to solve them, these infinities can be absorbed with a certain 
technique called renormalization. They can be considered as just changing the 
value ofm into m + ~rn and e into e + ~e, so that the physical values of these 
quantities m and e are different from the mathematical parameters occurring 
in the equations. That is quite a sensible idea. But the changes 8rn, ~e have 
to be infinitely great and that is not a sensible idea. 

Even so, people have proceeded boldly along these lines, and have set up 
working rules for handling these infinities. A very big development has been 
built up along these lines. It is a theory that I don't  like at all, because it's 
quite alright for mathematicians to neglect small quantities, but it is not 
alright for them to neglect infinitely large quantities just because they don't  
want them in the equations. I feel that it is basically wrong, in spite of the 
successes that this renormalization theory has had. 

The successes are really very great. With the infinities handled according 
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to the rules, one has small residual effects like the  Lamb shift of the spectral 
lines of hydrogen, for which the theory gives extremely good agreement with 
observation. Not  just moderately good, but extremely good. Most physicists 
are very happy with this situation. But I can't be happy with any theory that 
departs from sound mathematics, and I believe that fundamental physical 
theory will not make any important advance so long as one follows on lines 
using unsound mathematics. 

I have, during the last few years, been building up an alternative theory 
in which you get away from the idea of  point particles. You have instead a 
particle consisting of a finite distribution of charge, built up from elements 
such that each element moves in accordance with the Lorentz equation. I f  
you do that, then of course you'll have each element of charge associated 
with a field around it which will exert a repulsive Coulomb force on it, so that 
the particle would not hold together. This extended particle wilt have its 
different elements moving apart, accelerating under the influence of the 
Coulomb repulsion. It will be a sort of exploding particle. But even though 
the particle is exploding in that way, it does last a finite time, and you can 
study its equations of motion. You can see that they are sensible, apart from 
the fact that the whole solution is unphysical because of  the particle's not 
holding together properly. One can build up a theory of sensible equations of 
motion under those conditions. Now I realize that these equations of  motion 
are departing quite a bit from what the physicist wants, but I think that this 
blemish in the theory is preferable to the blemish of neglecting infinite 
quantities. 

I would like to talk in more detail about this theory of extended particles, 
and show you that, once you can accept the fact that the particles are not 
really stable, but are exploding, everything else works very well, in just the 
way you would like it to work. You can set up the equations of motion for the 
electron under those conditions and yo u can set up corresponding equations 
for the magnetic monopole. Further, you can set up an action principle which 
gives the correct equations of motion for the electrically charged particles 
and for the monopoles, and this action principle can be used as a basis for 
quantization. 

I can't go into the equations in detail--they would be much too com- 
plicated and would fill up the whole blackboard--but  I would like to tell you 
what the main ideas are. We consider our particles as extended over space, 
and in the inside of the particle we have a definite velocity 4-vector v ". We 
can introduce another 4-vector u" lying in the same direction as v ~, such that 
u" gives you not only the direction of motion of the element, but also the 
amount of mass and charge that is present, in accordance with the formula 

mu ~ dx I dx 2 dx a 
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for the amount  of  matter passing through a small element dx  1 dx  2 dx  3 at a 
given time, and formulas like 

mu ~ dx  o dx  2 dx  3 

giving the flow of the matter. There are similar formulas, involving the 
coefficient e instead of m, for the charge density and the flow of  charge. This 
u ~ thus combines in one 4-vector the amount  of  mass and of charge and its 
direction. 

We can set up the action associated with the mass, the inertial action. I t  is 

Im = - - m  f (u.u")l l2d4x (2.1) 

The minus sign is required to make the action increase as the matter  moves 
faster. There is also an action for the interaction of  the matter with the 
electrical field, which is 

Ie = - e f u " A . d 4 x  (2.2) 

There is the usual expression for the action of the electromagnetic field: 

Iv = - � 8 8  f Fu~Fu'd4x (2.3) 

I f  there are no other things present, you just take the sum of  these three 
terms as the total action, and then you can apply a variation principle and 
deduce the equations of  motion. 

The whole point of  this method is to apply the variation correctly. The 
variation has to correspond to each element of  the matter situated at some 
point x u being shifted to a point x" + b", with b" small. We have to figure 
out how the action changes under that displacement. Just f rom kinematical 
arguments, one finds that 

8u" = - ( u " b  v - u~b"),v (2.4) 

It  leads to 

and 

3Ira = rn f u~v...~bUd~x (2.5) 

= e j fu~uVb"d4x (2.6) 

There's a whole new technique of working with the effects on this kind 
of variation. One gets some curious equations, which are very easily worked 
out, and which one has to get used to. 
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If  we have monopoles present, how do we bring them in ? Well, each 
moaopole is again to be considered as an extended particle. Each bit of 
magnetic charge is the end of what we might call a string, the end of a line of 
singularity in three dimensions where formula (1.7) fails. We have many 
strings coming out from each bit of the extended monopole. 

Each string provides a two-dimensional surface in space-time. It will 
be described by a 6-vector w,v = - wv,. We have these w,~ variables describing 
the strings similar to the u, variables that describe an extended particle. When 
we make the shift x" ~ x" + b", we find that the change in w,~ is given by a 
rather similar formula to (2.4) with more terms in it: 

~w "~ = - ( w " V b ~ ) a  + w~Vl"u,~ + ,A,,AI,~,, ",~ 

Th s again is just a kinematical formula. 
Now if the magnetic monopoles appear at the end of the strings, we get 

the expression 

qU = w,V 

describing the density and ftow of the extended magnetic particle, like the u" 
for the extended electric particle. We have now automatically the conserva- 
tion law, 

q,". = 0 

The electromagnetic field quantities are now 

F,~ = A , ,~  - A~ , ,  + gw2v 

coI~sisting of the usual expression of the field in terms of the potentials, plus 
another term depending on the density of the strings, with a numerical 
coefficient g. The symbol ~ means again the dual 6-vector. We have to use this 
F,v in the action Iv for the electromagnetic field, given by (2.3). 

For  a complete theory we take the sum of the three actions (2.1), (2.2), 
and (2.3), and then there's one further term which is needed for the inertia 
of the magnetic pole. This will be of the same form as this term (2,1), with the 
q's instead of the u's. The total action will consist of those four terms. 

Now there's one strange feature that you will notice, namely, that there 
is ~,he term (2.2) for the interaction of the charged particles with the electro- 
magnetic field. There is no corresponding term for the interaction of the 
menopoles with the electromagnetic field. You get the correct equations of 
motion just using these action terms which I have described here, with no 
further term referring to the monopoles. What that means is that the electro- 
magnetic field doesn't act directly on the monopole, it only acts on the strings. 
It acts on the strings on account of the F~ involving the w,~, which involve 
the string variables. The monopoles are then constrained to be at the ends of 
the strings. 
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The theory that you get by varying the total action gives correctly the 
equations of motion, the Lorentz equation (1.5), and the corresponding 
magnetic ectuation (1.6). They all follow from the one action principle. There 
is no symmetry, because the effect of the field on the monopoles is provided 
simply through the field acting On the strings and the monopoles being 
constrained to lie at the ends of the strings. 

The equations that follow from the action principle do not in any way 
tell you how the strings vary. The strings are arbitrary except for the fact that 
their ends have to be anchored to the monopoles. That is reflected in the fact 
that the equations of motion do not influence the motion of the strings at all. 

There is one condition that has to be observed, however, namely, that 
the strings must not pass through the regions where there is electric charge 
present. You must have the monopoles and the electric charges occupying 
distinct regions of space. The strings, which come out from the monopoles, 
can be drawn anywhere subject to the condition that they must not pass 
through a region where there is electric charge present. The equations fail 
unless you observe that condition. 

I don't  think there's any point in going into greater detail into this 
theory, because the equations are too complicated and one just has to study 
them in detail and pick out all the various terms in the action principle and 
see how they are to be handled. The details may be found in the references 
given at the end. 

3. THE EXPERIMENTAL SITUATION 

I would now like to say a few words about the experimental situation. 
Two years ago there was a paper by Price, Shirk, Osborne, and Pinsky, where 
they said they thought they had experimental evidence for a monopole. What 
they had done was to send up a stack of Lexan plates to a high altitude with 
a balloon, and then, when the plates were brought back to earth, carried out 
an etching of them. When ionizing particles pass through the plates, they do 
some damage, which appears as etch marks on the plates. 

Now if you have an ordinary charged particle, as it loses energy, it will 
increase its rate of ionization. The reason for this is that, as it passes through 
matter, it exerts a force on the electrons in the matter around it, and the im- 
pulse on an electron will depend on how long the force acts. For a rapidly 
moving particle the force does not act for very long and the impulse will be 
small. For a slower moving particle the impulse will be greater because the 
particle spends more time going by. The result is that, with an ordinary 
charged particle, the amount of ionization increases as the particle moves 
more slowly. 

With a magnetically charged particle, on the other hand, the force that 
it exerts on an electron in a surrounding atom depends on the velocity, and, 
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as the particle moves more slowly, there is a reduction in this force, which 
approximately compensates for the fact that the particle is moving more 
slowly and has more time to exert its force on the surrounding matter. The 
result is that the ionization produced by a magnetically charged particle is 
roughly independent of the velocity. 

Now Price and Shirk and the others had a stack of  Lexan plates, and 
they observed that the amount of damage done by one particular particle 
passing through those plates was roughly independent of the velocity of the 
particle. The etch marks are pretty much the same all the way down the stack. 
And so they said, there is evidence of a magnetically charged particle, maybe 
it's a monopole. 

They worked out what the strength of the monopole should be. They 
made some errors in their preliminary paper, which was written very hur- 
riedly, but even after correction of those errors, the results agree fairly well 
with a monopole, not of minimum strength n = 1 in formula (1.14), but with 
n = 2. The results are shown in the diagram (Figure 1). For a monopole 
with n = 2, they should lie on the vertical line. 

The objection to interpreting this particle which they observed as a 
monopole is that other very extensive searches have been made for monopoles 
and the results are completely negative. I f  it really is a monopole that they 
observed, the chances against it are one in many millions, or even billions, and 
thus it seems most unlikely that they did observe a monopole. I f  there are 
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Fig. 1. Diagram illustrating thelresults found by Price, Shirk, Osborne, and Pinsky. (Re- 
printed from Phys. Rev. Lett. (1975), 35, 488.) 
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monopoles that are raining down on us in the cosmic rays, they must end up 
somewhere. A monopole is conserved just like an electric charge is conserved. 
It can't disappear; if the monopole particle disintegrates into other particles, 
one of the products of the disintegration must contain a monopole. It is 
impossible for a monopole to disappear except by annihilation with another 
monopole of equal and opposite magnetic strength. People have made very 
extensive searches for these monopoles, including rocks and sediment at the 
bottom of the sea, and in places of high latitude near the magnetic poles of the 
earth. And they always get zero results. 

It could be that the monopoles striking the earth go down to very great 
depths. That would be one reason why it might be that these monopoles are 
never observed. If  there are monopoles at great depths, the way to detect them 
would be to observe the magnetic flux going out from the surface of the earth 
all over the surface of the earth and see whether the integral is different from 
zero. As far as I know, that work has not been done with great accuracy; 
there's too much irregularity in the earth's magnetic field. But I believe that 
it ought to be done. 

Right at the beginning of the announcement of this Price and Shirk 
experiment, when people were discussing it, there was strong opposition 
brought out by Alvarez in particular, along with other people. Alvarez 
thought that these results might come from some more ordinary particle, 
such as a platinum nucleus.-Now an atomic nucleus would give a curve which 
moves off to the right as one goes down, such as the dashed curve of  Figure 1, 
representing a particle with Z = 96 and velocity v/e = fl = 0.75. This would 
not fit the experimental points. Alvarez proposed that at a suitable place the 
ionizing particle underwent a fragmentation, a disintegration, as a result of  
which it lost some of  its charge, to give a curve more nearly vertical. One 
fragmentation would not have done very well, and maybe two would be 
needed. 

Now I have recently spoken with Buford Price to ask him about the 
latest information in regard to this experiment. He says that he got some 
further results because, when he wrote his original paper, he had not carried 
out the etchings on all his plates. The ones at the top and the bottom of  the 
stack had been kept in reserve, and since then they have been etched and the 
results they give will not fit the Alvarez explanation. And even Alvarez 
himself has had to give up this explanation. The further points at the top and 
the bottom would be too far off this kind of curve. 

How can one then explain this particle ? It seems that it has to be some 
very exotic particle, some particle which is not known to physicists at the 
present time. It might be a super-heavy atomic nucleus, a particle with a 
charge, say, of somewhere around 110 and a very heavy mass. I f  you go to a 
particle like that, the dashed curve becomes more nearly vertical because the 
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pa ticle with a bigger mass would not andergo such a big change in velocity 
as it goes through the Lexan plates and so it would not be shifted so far to 
the right. I t  could be a super-heavy like that. 

Alternatively, it could be a particle of  antimatter, with perhaps a charge 
lower than one would need for ordinary matter. I f  it is antimatter, the charge 
m~y be 80 or so. I heard that Alvarez rather likes the idea of ant imatter-- i t  
wculd fit the observations very well. But it would be very unusual to have such 
a particle, and Alvarez, in any case, thinks that one should not believe in it 
just f rom this one example. We need to get further specimens of it. 

Price is hoping to do further experiments with orbiting apparatus. That  
is :0r the future. All one can say at the present is that they certainly found a 
very strange particle that cannot be explained in terms of the ordinary 
pa:ticles of  physics, and we must wait for further evidence before we can be 
colffident of  what it is. 

They did have some Cerenkov detectors, but unfortunately, they don' t  
gi~ ~ very definite information. Cerenkov detectors should tell you the velocity 
of  the particle, and they have been analyzing the results for a long time, but 
they still haven't  come up with any definite conclusion. That  is all that can be 
said at the present time. There's certainly something very interesting there, 
even if it 's not a monopole. Thank you. 
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